Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of Shunt Resistor Value on the Performance of Resistive Superconducting Fault Current Limiters

Authors: Hamoud Alafnan; Diaa-Eldin A. Mansour; Xiaoze Pei; Moanis Khedr; Mansoor Alturki; Abdullah Albaker; Ibrahim Alsaleh; +1 Authors

Effect of Shunt Resistor Value on the Performance of Resistive Superconducting Fault Current Limiters

Abstract

Resistive-type superconducting fault current limiters (r-SFCLs) have generated great interest for research and technical applications. This is attributed to their superior features, which include self-action, fast response, and simple operation. In low line impedance systems, r-SFCLs are seen as a viable protective mechanism for limiting high-magnitude fault currents. However, overcurrent caused by faults results in an increased temperature of the r-SFCL, possibly damaging the coils. Thus, the r-SFCL must be appropriately engineered to protect it while still allowing for effective fault current limitation. To achieve this goal, an appropriately sized shunt resistor must be used. Adding a shunt resistor benefits the r-SFCL in several ways, from lowering its maximum temperature to speeding up its recovery. Additionally, the shunt resistor protects the r-SFCL from excessive surges in temperature by giving the current an alternative path to flow down, thus saving it from further damage. A multilayer thermoelectric model was developed to examine the thermoelectrical behavior of the r-SFCL coil throughout a fault occurrence and the subsequent recovery period using three shunt resistors ranging from 4 to 16 Ω. MATLAB®/Simulink was used as the simulation platform in this study. The dependence of the current limitation capability and the voltage profile on the shunt resistor value was studied compared to the basic case without an r-SFCL. Increasing the shunt resistor value led to an enhanced ability to limit fault currents, although at the cost of higher temperatures and a longer recovery time. This study also presents guidance for optimizing the design parameters of r-SFCLs.

Keywords

Technology, QH301-705.5, T, Physics, QC1-999, protection device, Engineering (General). Civil engineering (General), Chemistry, resistive superconducting fault current limiters (r-SFCL), multilayer model, TA1-2040, Biology (General), QD1-999, shunt resistor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold