
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimization Strategy for Electric Vehicle Routing under Traffic Impedance Guidance

doi: 10.3390/app132011474
Electric vehicles (EVs) not only serve as significant loads for the power grid but also play a crucial role in the operation of the traffic. Their travel and charging behaviors have an impact on both the power grid and the road network. In order to address the potential impacts of a large-scale deployment of EVs on the power grid and the exacerbation of traffic congestion, this paper first establishes a dynamic road network model based on graph theory and time-varying traffic data combined with a road impedance model. Then, the spatio-temporal distribution characteristics of EV travel are modeled. Furthermore, by incorporating real-time road network data, the traditional Dijkstra’s algorithm for finding the optimal path is improved. At each node, the current real-time road impedance is used as the objective for EV path updates, thus accurately capturing the energy consumption of the EVs. Finally, using a standard testing problem on a typical working day based on data from a real case, the impacts of EV travel and charging behaviors on power distribution network operation and traffic congestion are analyzed under scenarios with no guidance and guidance for the shortest travel time. The results show that this method can significantly reduce the time cost by approximately 18% in travel time, which is of particular concern to users. This method balances the load of the charging stations, elevates the voltage level within the safety requirement of 7%, and simultaneously alleviates traffic congestion near the stations.
- North China Electric Power University China (People's Republic of)
- Inner Mongolia University of Technology China (People's Republic of)
- Inner Mongolia University of Technology China (People's Republic of)
- North China Electric Power University China (People's Republic of)
Technology, QH301-705.5, T, Physics, QC1-999, traffic impedance, Engineering (General). Civil engineering (General), Chemistry, route planning, TA1-2040, Biology (General), QD1-999, electric vehicles, power–traffic coupling network
Technology, QH301-705.5, T, Physics, QC1-999, traffic impedance, Engineering (General). Civil engineering (General), Chemistry, route planning, TA1-2040, Biology (General), QD1-999, electric vehicles, power–traffic coupling network
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
