Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterisation of Dust Particles Deposited on Photovoltaic Panels in the United Arab Emirates

Authors: Abdulrahman Alraeesi; Ali Hasan Shah; Ahmed Hassan; Mohammad Shakeel Laghari;

Characterisation of Dust Particles Deposited on Photovoltaic Panels in the United Arab Emirates

Abstract

The United Arab Emirates (UAE) experiences up to 50% power losses in photovoltaic (PV) panels caused by frequent dust accumulation over the panels trailed by extreme temperature. Compositional and morphological insights into dust particle can potentially help design PV cleaning mechanisms inclusive of self-cleaning explored in the current article. Five different locations were studied to discover potential differences in dust samples. The collected samples were characterised employing Optical Microscopy, Scanning Electron Microscopy (SEM), X-ray Powder Diffraction (XRD), and Elemental Composition Analysis (Energy Dispersive Spectrometry, EDS). The micrographs revealed that the majority of particles were irregularly shaped, providing interlocking for the dust to stay over the surface. The particle size ranged from 0.01 to 300 µm, and some of the collected dust exhibited cavities. XRD analyses revealed variations in the chemical composition among the samples studied. Elemental Composition Analysis via EDS revealed both consistent patterns and variations in element presence among the dust samples, highlighting specific detections of chlorine (Cl) at some sites.

Related Organizations
Keywords

Technology, QH301-705.5, T, Physics, QC1-999, Engineering (General). Civil engineering (General), X-ray powder diffraction (XRD), dust accumulation, performance degradation, photovoltaic, Chemistry, dust chemical composition, scanning electron microscopy (SEM), TA1-2040, Biology (General), QD1-999

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold