Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Management of Plastic Wastes through Recent Advanced Pyrolysis Processes

Authors: Zarook Shareefdeen; Aya Tarek ElGazar;

Management of Plastic Wastes through Recent Advanced Pyrolysis Processes

Abstract

Plastics are predominant in numerous sectors like packaging, agriculture, hardware, electronics, and many others. Annual plastic demand has been rapidly growing in the last few decades because of the increasing dependency on plastics. As a consequence, massive amounts of plastic waste are being generated every year. These plastic wastes are non-biodegradable, and hence their disposal poses a serious threat to the ecosystem and causes significant environmental problems such as endangering the safety of marine life, wildlife, air, water, and soil, etc. A large portion of plastic waste ends up in landfills, and only a small fraction is recycled. The continuous dependence on landfills as the main disposal method for plastic waste is costly and ineffective. Common solutions to plastic waste management are incineration and recycling; however, incineration emits harmful pollutants and greenhouse gases that contribute to ozone layer depletion and global warming; moreover, recycling is expensive and inefficient. As an alternative to recycling and incineration, the pyrolysis process can convert plastic wastes into more valuable fuel products. Pyrolysis is a thermal process that converts raw material into pyrolysis liquid, solid wax, and non-condensable gases in the absence of oxygen. This process is attractive because it is economical and energy-efficient, and it can be used to convert various types of plastic waste into valuable products. In recent years, there have been significant developments in pyrolysis applications in liquid fuel production from plastic wastes. This work reviews recent advances in and challenges for the pyrolysis process for converting plastic wastes into a valuable alternative fuel, focusing on studies of advanced pyrolysis processes published over the last five years. The paper also highlights the numerical modeling of pyrolysis of plastic wastes and the potential impact of pyrolysis on the future of sustainable waste-management practices of plastics.

Related Organizations
Keywords

Technology, landfilling, QH301-705.5, T, Physics, QC1-999, recycling, pyrolysis, Engineering (General). Civil engineering (General), Chemistry, plastic, wastes, fuels, TA1-2040, Biology (General), QD1-999

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
gold