Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital Repository o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Robust Wind Turbine Component Health Status Indicator

Authors: Roberto Lázaro; Julio J. Melero; Nurseda Y. Yürüşen;

A Robust Wind Turbine Component Health Status Indicator

Abstract

Wind turbine components’ failure prognosis allows wind farm owners to apply predictive maintenance techniques to their fleets. Determining the health status of a turbine’s component typically requires verifying many variables that should be monitored simultaneously. The scope of this study is the selection of the more relevant variables and the generation of a health status indicator (Failure Index) to be considered as a decision criterion in Operation and Maintenance activities. The proposed methodology is based on Gaussian Mixture Copula Models (GMCMs) combined with a smoothing method (Cubic spline smoothing) to define a component’s health index based on the previous behavior and relationships between the considered variables. The GMCM allows for determining the component’s status in a multivariate environment, providing the selected variables’ joint probability and obtaining an easy-to-track univariate health status indicator. When the health of a component is degrading, anomalous behavior becomes apparent in certain Supervisory Control and Data Acquisition (SCADA) signals. By monitoring these SCADA signals using this indicator, the proposed anomaly detection method could capture the deviations from the healthy working state. The resulting indicator shows whether any failure is likely to occur in a wind turbine component and would aid in a preventive intervention scheduling.

Country
Spain
Keywords

Technology, 330, QH301-705.5, Gaussian Mixture Copula models, T, Physics, QC1-999, Engineering (General). Civil engineering (General), wind turbine, Chemistry, cubic spline smoothing, failure index, TA1-2040, Biology (General), QD1-999, health status indicator

Powered by OpenAIRE graph
Found an issue? Give us feedback