Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RUIdeRA
Article . 2025
Data sources: RUIdeRA
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Data-Driven Approach with a Long Short-Term Memory Autoencoder Model with a Multihead Self-Attention Deep Learning Model for Wind Turbine Converter Fault Detection

Authors: Joel Torres-Cabrera; Jorge Maldonado-Correa; Marcelo Valdiviezo-Condolo; Estefanía Artigao; Sergio Martín-Martínez; Emilio Gómez-Lázaro;

A Novel Data-Driven Approach with a Long Short-Term Memory Autoencoder Model with a Multihead Self-Attention Deep Learning Model for Wind Turbine Converter Fault Detection

Abstract

The imminent depletion of oil resources and increasing environmental pollution have driven the use of clean energy, particularly wind energy. However, wind turbines (WTs) face significant challenges, such as critical component failures, which can cause unexpected shutdowns and affect energy production. To address this challenge, we analyzed the Supervisory Control and Data Acquisition (SCADA) data to identify significant differences between the relationship of variables based on data reconstruction errors between actual and predicted values. This study proposes a hybrid short- and long-term memory autoencoder model with multihead self-attention (LSTM-MA-AE) for WT converter fault detection. The proposed model identifies anomalies in the data by comparing the reconstruction errors of the variables involved. However, more is needed. To address this model limitation, we developed a fault prediction system that employs an adaptive threshold with an Exponentially Weighted Moving Average (EWMA) and a fixed threshold. This system analyzes the anomalies of several variables and generates fault warnings in advance time. Thus, we propose an outlier detection method through data preprocessing and unsupervised learning, using SCADA data collected from a wind farm located in complex terrain, including real faults in the converter. The LSTM-MA-AE is shown to be able to predict the converter failure 3.3 months in advance, and with an F1 greater than 90% in the tests performed. The results provide evidence of the potential of the proposed model to improve converter fault diagnosis with SCADA data in complex environments, highlighting its ability to increase the reliability and efficiency of WTs.

Country
Spain
Related Organizations
Keywords

SCADA data, Technology, Multi-head attention, QH301-705.5, QC1-999, wind turbine, Converter, Biology (General), QD1-999, fault prediction, autoencoder, T, Physics, Autoencoder, converter, Engineering (General). Civil engineering (General), Chemistry, Fault prediction, TA1-2040, LSTM, Wind turbine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold