Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Low-Cost IoT System Based on the ESP32 Microcontroller for Efficient Monitoring of a Pilot Anaerobic Biogas Reactor

Authors: Sotirios D. Kalamaras; Maria-Athina Tsitsimpikou; Christos A. Tzenos; Antonios A. Lithourgidis; Dimitra S. Pitsikoglou; Thomas A. Kotsopoulos;

A Low-Cost IoT System Based on the ESP32 Microcontroller for Efficient Monitoring of a Pilot Anaerobic Biogas Reactor

Abstract

A pilot anaerobic bioreactor requires near-daily monitoring and frequent maintenance. This study aimed to upgrade a pilot bioreactor into a low-cost IoT device via ESP32 microcontrollers. The methodology was based on remote data acquisition and online monitoring of various parameters towards assessing the anaerobic digestion performance. A semi-continuous tank bioreactor with a 60 L total volume was initially inoculated mainly with livestock manure and fed daily with a mixture of glucose, gelatin, and oleic acid, supplemented with a basic anaerobic medium. Under steady-state conditions, the organic loading rate was 2 g VS LR−1 d−1. Sensors for pH, temperature, REDOX potential, and ammonium concentration, along with devices measuring biogas volume and methane content, were integrated and validated against analytical methods. Biogas production was recorded accurately, enabling the early detection of production declines through ex-situ data analysis. Methane concentration variance was less than 6% compared to gas chromatography, while temperature and pH deviations were 0.15% and 1.67%, respectively. Ammonia ion measurements required frequent recalibration due to larger fluctuations. This IoT-enhanced system effectively demonstrated real-time monitoring of critical bioreactor parameters, with ESP32 enabling advanced control and monitoring capabilities.

Related Organizations
Keywords

anaerobic digestion, Technology, IoT bioreactor, QH301-705.5, methane, T, Physics, QC1-999, Engineering (General). Civil engineering (General), Chemistry, biogas, ESP32, TA1-2040, Biology (General), QD1-999

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold