Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of Blade Geometric Parameters on the Specific Cutting Energy of Willow (Salix viminalis) Stems

Authors: Tomasz Nowakowski; Karol Tucki;

Impact of Blade Geometric Parameters on the Specific Cutting Energy of Willow (Salix viminalis) Stems

Abstract

This article presents a model to estimate the specific energy demand for cutting annual willow stems, considering variations in plant moisture content and sliding-cutting angles. The study involved laboratory tests and statistical analyses. Key parameters were measured for 50 randomly selected annual willow shoots, including total plant weight, leaf weight, stem weight, centre of gravity of the shoot, shoot length, and stem diameter at specified heights: 0, 150, 500, 750, 1000, 1250, 1500, and 2000 mm. Five levels of willow shoot moisture content were evaluated. The study established a cutting force-deformation relationship through strength tests with an accuracy of 1 N, which was subsequently used to calculate shear stress and specific cutting energy. Steel blades with an angle of 30° and sliding-cutting angles of 0°, 15°, 30°, and 45° were used in the study. Ten repetitions were performed for each combination of variable parameters: shoot moisture content and blade sliding-cutting angle. Experimental results were evaluated using analysis of variance (ANOVA), while Duncan’s test was applied to identify and classify groups with homogeneous specific energy values. The developed characterisation offers valuable information for designing shredding units and optimising their operational parameters to reduce energy consumption.

Related Organizations
Keywords

willow, Technology, biomass, QH301-705.5, T, Physics, QC1-999, Engineering (General). Civil engineering (General), Chemistry, specific cutting energy, TA1-2040, Biology (General), machine, QD1-999, agriculture

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research