Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Decarbonizing Near-Zero-Energy Buildings to Zero-Emission Buildings: A Holistic Life Cycle Approach to Minimize Embodied and Operational Emissions Through Circular Economy Strategies

Authors: Amalia Palomar-Torres; Javier M. Rey-Hernández; Alberto Rey-Hernández; Francisco J. Rey-Martínez;

Decarbonizing Near-Zero-Energy Buildings to Zero-Emission Buildings: A Holistic Life Cycle Approach to Minimize Embodied and Operational Emissions Through Circular Economy Strategies

Abstract

The decarbonization of the building sector is essential to mitigate climate change, aligning with the EU’s Energy Performance of Buildings Directive (EPBD) and the transition from near-Zero-Energy Buildings (nZEBs) to Zero-Emission Buildings (ZEBs). This study introduces a novel and streamlined Life Cycle Assessment (LCA) methodology, in accordance with EN 15978, to holistically evaluate the Global Warming Potential (GWP) of buildings. Our approach integrates a calibrated dynamic simulation of operational energy use, performed with DesignBuilder, to determine precise operational CO2 emissions. This is combined with a comprehensive assessment of embodied emissions, encompassing construction materials and transportation phases, using detailed Environmental Product Declarations (EPDs). Applied to the IndUVa nZEB case study, the findings reveal that embodied emissions dominate the life cycle GWP, accounting for 69%, while operational emissions contribute just 31% over 50 years. The building’s use of 63.8% recycled materials highlights the transformative role of circular economy strategies in reducing embodied impacts. A comparative analysis of three energy-efficiency scenarios demonstrates the IndUVa building’s exceptional performance, achieving energy demand reductions of 78.4% and 85.6% compared to the ASHRAE and CTE benchmarks, respectively. This study underscores the growing significance of embodied emissions as operational energy demand declines. Achieving ZEBs requires prioritizing embodied carbon reduction through sustainable material selection, recycling, and reuse, targeting a minimum of 70% recycled content. By advancing the LCA framework, this study presents a pathway for achieving ZEBs, driving a substantial reduction in global energy consumption and carbon emissions, and contributing to climate change mitigation.

Keywords

Technology, QH301-705.5, T, Physics, QC1-999, Engineering (General). Civil engineering (General), energy base line, Chemistry, zero-carbon buildings, sustainable buildings, nZEB, TA1-2040, Biology (General), QD1-999, energy efficiency

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research