Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2025
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DUGiDocs – Universitat de Girona
Article . 2025 . Peer-reviewed
License: CC BY
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Methodological Advances in Temperature Dynamics Modeling for Energy-Efficient Indoor Air Management Systems

Authors: Ferran Iglesias; Joaquim Massana; Llorenç Burgas; Narcís Planellas; Joan Colomer;

Methodological Advances in Temperature Dynamics Modeling for Energy-Efficient Indoor Air Management Systems

Abstract

Heating, ventilation, and air conditioning (HVAC) systems account for up to 40% of the total energy consumption in buildings. Improving the modeling of HVAC components is necessary to optimize energy efficiency, maintain indoor thermal comfort, and reduce their carbon footprint. This work addresses the lack of a general methodology for data preprocessing by introducing a novel approach for feature extraction and feature selection based on physical equations and expert knowledge that can be applied to any data-driven model. The proposed framework enables the forecasting of indoor temperatures and the energy consumption of individual HVAC components. The methodology is validated with real-world data from a system involving a fan coil unit and a thermal inertia deposit powered by geothermal energy, achieving a coefficient of determination (R2) of 0.98 and mean absolute percentage error (MAPE) of 0.44%.

Country
Spain
Related Organizations
Keywords

Technology, QH301-705.5, Energia -- Consum, T, Physics, QC1-999, temperature, modeling, forecasting, Ventilació, Aire condicionat, Engineering (General). Civil engineering (General), HVAC, Ventilation, Edificis -- Enginyeria ambiental, Buildings -- Environmental engineering, Calefacció, Energy consumption, Heating, Chemistry, Air conditioning, tendency, TA1-2040, Biology (General), QD1-999

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research