
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Turbocharger Axial Turbines for High Transient Response, Part 2: Genetic Algorithm Development for Axial Turbine Optimisation

doi: 10.3390/app9132679
In a previous paper, a preliminary design methodology was proposed for the design of an axial turbine, replacing a conventional radial turbine used in automotive turbochargers, to achieve improved transient response, due to the intrinsically lower moment of inertia. In this second part of the work, the focus is on the optimisation of this preliminary design to improve on the axial turbine efficiency using a genetic algorithm in order to make the axial turbine a more viable proposition for turbocharger turbine application. The implementation of multidisciplinary design optimisation is essential to the aerodynamic shape optimisation of turbocharger turbines, as changes in blade geometry lead to variations in both structural and aerodynamics performance. Due to the necessity to have multiple design objectives and a significant number of variables, genetic algorithms seem to offer significant advantages. However, large generation sizes and simulation run times could result in extensively long periods of time for the optimisation to be completed. This paper proposes a dimensioning of a multi-objective genetic algorithm, to improve on a preliminary blade design in a reasonable amount of time. The results achieved a significant improvement on safety factor of both blades whilst increasing the overall efficiency by 2.55%. This was achieved by testing a total of 399 configurations in just over 4 h using a cluster network, which equated to 2.73 days using a single computer.
- Brunel University United Kingdom
- Brunel University London United Kingdom
- Brunel University London United Kingdom
Technology, turbocharger, QH301-705.5, T, Physics, QC1-999, 621, Engineering (General). Civil engineering (General), 620, genetic algorithms, 629, Chemistry, TA1-2040, Biology (General), QD1-999, axial turbine, multidisciplinary design optimisation
Technology, turbocharger, QH301-705.5, T, Physics, QC1-999, 621, Engineering (General). Civil engineering (General), 620, genetic algorithms, 629, Chemistry, TA1-2040, Biology (General), QD1-999, axial turbine, multidisciplinary design optimisation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
