
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
High-Resolution Simulations of the Urban Thermal Climate in Suzhou City, China

City thermal discomfort conditions have been exacerbated by the rapid urbanization processes in China. High-resolution urban thermal climate simulations can help us to understand urban climate features and produce better urban designs. In this paper, a single-layer urban canopy model (UCM) combined with Landsat satellite data and high-resolution meteorological forcing data was used to simulate very-high-resolution characteristics of temperature and humidity at the urban canopy level, and the heat index at the pedestrian level was also estimated. The research shows that the National center of environmental forecasting, Oregon state university, Air force and Hydrological research lab (NOAH)-UCM model can simulate the distribution of meteorological elements for different land uses in a fine and effective manner, making it an effective approach to obtaining the fundamental data for urban climate analysis. The spatial distribution pattern of urban heat islands in Suzhou is highly consistent with urban land cover fraction. High-density and medium-density urban areas are centers of urban heat islands, and the annual number of high-temperature days and heat indices over the high-density and medium-density urban areas are markedly higher than those in low-density cities and suburbs, indicating that urban development has a significant impact on the urban thermal environment.
- Nanjing University China (People's Republic of)
urban heat island intensity index, surface energy balance, urban canopy model, urban climatic analysis map, ventilation capacity index, Meteorology. Climatology, QC851-999
urban heat island intensity index, surface energy balance, urban canopy model, urban climatic analysis map, ventilation capacity index, Meteorology. Climatology, QC851-999
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
