Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospherearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Atmosphere
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Atmosphere
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spatio-Temporal Analysis of Changes in the Iranian Summer Subtropical High-Pressure System from a Climate Change Perspective

Authors: Mokhtar Fatahian; Zahra Hejazizadeh; Ali Reza Karbalaee; Hamed Shahidinia; Junye Wang;

Spatio-Temporal Analysis of Changes in the Iranian Summer Subtropical High-Pressure System from a Climate Change Perspective

Abstract

Climate change plays a significant role in altering the behavior of large-scale atmospheric systems, particularly the subtropical high-pressure systems relevant to the climate of Iran. This study investigates the impact of climate change on the subtropical high-pressure system over Iran by utilizing ERA5 reanalysis data and CORDEX projections. Focusing on future projections (2022–2063) under RCP4.5 and RCP8.5 scenarios, the analysis reveals substantial shifts in the position and intensity of the subtropical high when comparing the high-pressure center between currently observed data and the projected scenarios. The center of the high-pressure system exhibits a northward migration, particularly pronounced in August; a consistent upward trend in geopotential height, analyzed using the Kendall trend method, is observed, indicating a strengthening of the high-pressure system. This intensification leads to a westward and northward expansion of the summer high-pressure cell. Consequently, this study anticipates the emergence of more pronounced cyclonic circulations at higher latitudes (>38° N) in the future. These findings suggest that climate change will substantially alter the behavior of the subtropical high over Iran, impacting regional weather patterns and potentially leading to climate anomalies.

Related Organizations
Keywords

climate change, Meteorology. Climatology, subtropical high-pressure ridge, trend analysis, Iran, QC851-999

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research