

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Poly(vinyl benzoate)-b-poly(diallyldimethyl ammonium TFSI)-b-poly(vinyl benzoate) Triblock Copolymer Electrolytes for Sodium Batteries

handle: 10261/355695
Block copolymers (BCPs) as solid electrolytes for batteries are usually designed to have an ion-solvating block for ion conduction and an ionophobic block for providing mechanical strength. Here, we show a novel solid polymer electrolyte (SPE) for sodium batteries based on a poly(vinyl benzoate)-b-poly(diallyldimethyl ammonium bis(trifluoromethanesulfonyl)imide) PVBx-b-PDADMATFSIy-b-PVBx ABA triblock copolymer. The SPE triblock copolymer comprises a polymerized ionic liquid (PIL) ion-solvating block combined with NaFSI salt as an internal block and an ionophilic PVB as an external block. Four distinct compositions with varying chain lengths of the blocks were synthesized by reversible addition−fragmentation chain-transfer (RAFT) polymerization. The neat copolymers were subsequently mixed with NaFSI in a 2:1 mol ratio of Na to ionic monomer units. Through comprehensive analysis using differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR), it was revealed that the ion coordination within the polymer–salt mixtures undergoes changes based on the composition of the starting neat polymer. Electrochemical evaluations identified the optimal composition for practical application as PVB11.5K-b-PDADMATFSI33K-b-PVB11.5K, showing an ionic conductivity at 70 °C of 4.2 × 10−5 S cm−1. This polymer electrolyte formulation was investigated for sodium in Na|Na symmetrical cells, showing an overpotential of 200 mV at 70 °C at 0.1 mA cm−2. When applied in a sodium–air battery, the polymer electrolyte membrane achieved a discharge capacity of 1.59 mAh cm−2 at 50 °C.
- Ikerbasque Spain
- Deakin University Australia
- Deakin University Australia
- Instituto de Carboquímica Spain
- Soochow University China (People's Republic of)
sodium batteries, TK1001-1841, Ensure access to affordable, reliable, sustainable and modern energy for all, sodium-air batteries, Sodium-air batteries, Block copolymers, TP250-261, block copolymers, Production of electric energy or power. Powerplants. Central stations, polymer electrolytes, Industrial electrochemistry, Sodium batteries, Polymer electrolytes
sodium batteries, TK1001-1841, Ensure access to affordable, reliable, sustainable and modern energy for all, sodium-air batteries, Sodium-air batteries, Block copolymers, TP250-261, block copolymers, Production of electric energy or power. Powerplants. Central stations, polymer electrolytes, Industrial electrochemistry, Sodium batteries, Polymer electrolytes
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 59 download downloads 80 - 59views80downloads
Data source Views Downloads DIGITAL.CSIC 59 80


