Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Batteriesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Batteries
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Batteries
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prediction of Lithium-Ion Battery Health Using GRU-BPP

Authors: Sahar Qaadan; Aiman Alshare; Alexander Popp; Benedikt Schmuelling;

Prediction of Lithium-Ion Battery Health Using GRU-BPP

Abstract

Accurate prediction of lithium-ion batteries’ (LIBs) state-of-health (SOH) is crucial for the safety and maintenance of LIB-powered systems. This study addresses the variability in degradation trajectories by applying gated recurrent unit (GRU) networks alongside principal component analysis (PCA), Granger causality, and K-means clustering to analyze the relationships between operating conditions—such as temperature and load profiles—and battery performance degradation. This paper uses a publicly accessible dataset derived by aging three prismatic LIB cells under a realistic forklift operation profile. First, we identify the features that are relevant to driving variance, then we employ the winning algorithm of K-means clustering for the classification of operational states. Granger causality later investigates the inter-group relationships. Our GRU-BPP model achieves an RMSE value of 0.167 and an MAE of 0.129 for the reference performance testing (RPT) dataset and an RMSE of 0.032 with an MAE of 0.025 for the aging dataset, thus outperformed benchmark methods such as GRU, LME, and XGBoost. These results further enhance the predictiveness and robustness of this approach and yield a holistic solution to the conventional challenges in battery management and their remaining useful life (RUL) predictions.

Keywords

state of health, TK1001-1841, principal component analysis, TP250-261, Production of electric energy or power. Powerplants. Central stations, Industrial electrochemistry, gated recurrent unit, model performance test, Granger causality analysis, clustering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold
Related to Research communities
Energy Research