Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Batteriesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Batteries
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Batteries
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessment of a Top and Bottom Cooling Strategy for Prismatic Lithium-Ion Cells Intended for Automotive Use

Authors: Said Madaoui; Bartlomiej Guzowski; Roman Gozdur; Zlatina Dimitrova; Nicolas Audiot; Jocelyn Sabatier; Jean-Michel Vinassa; +1 Authors

Assessment of a Top and Bottom Cooling Strategy for Prismatic Lithium-Ion Cells Intended for Automotive Use

Abstract

In contemporary vehicle applications, lithium-ion batteries have become a leading option among the diverse array of battery technologies available. This preference is attributed to their advantageous properties, which include low self-discharge rates and no memory effect. Despite these benefits, lithium-ion batteries are not without their challenges. The key issues include a restricted driving range, concerns regarding longevity, safety risks, and prolonged charging durations. Efforts aimed at minimizing the charging duration frequently entail the introduction of elevated currents into the battery, a practice that can significantly elevate its temperature and, in turn, diminish its operational lifespan. Generally, battery packs in electric vehicles are equipped with flat cooling plates located on their side or bottom surfaces, which also serve the dual purpose of providing heating in colder conditions. Nevertheless, this cooling configuration faces difficulties during fast charging and may not efficiently heat or cool the batteries. In this work, a novel thermal management approach is proposed, in which a battery module is cooled not only with a bottom cooling plate but also using another cooling plate in contact with the busbars, located on the top of the battery module. The simulations and experimental tests show that this new configuration demonstrates significant improvements. The thermal time constant is reduced by 47%, enabling faster cooling of the module. Additionally, the maximum temperature reached by the battery during charging with dual cooling is lowered by 6 °C compared to the conventional approach. In this configuration, the top cooling plate acts as a thermal bridge. This is a key advantage that promotes temperature homogenization within the battery module. As a result, it supports an even aging process of batteries, ensuring their longevity and optimal performance.

Keywords

TK1001-1841, cooling plates, electric vehicle, Li-ion batteries, TP250-261, Production of electric energy or power. Powerplants. Central stations, Industrial electrochemistry, thermal management, thermal gradient

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research