
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ceramic-Rich Composite Separators for High-Voltage Solid-State Batteries

Composite solid electrolytes are gaining interest regarding their use in Li-metal solid-state batteries. Although high ceramic content improves the electrochemical stability of ceramic-rich composite separators (C-SCE), the polymeric matrix also plays a vital role. In the first generation of C-SCE separators with a PEO-based matrix, the addition of 90–95 wt% of Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO) does not make C-SCE stable for cell cycling with high-voltage (HV) cathodes. For the next iteration, the objective was to find an HV-stable polymeric matrix for C-SCEs. Herein, we report results on optimizing C-SCE separators with different ceramics and polymers which can craft the system towards better stability with NMC622-based composite cathodes. Both LLZO and Li1.3Al0.3Ti1.7(PO4)3 (LATP) were utilized as ceramic components in C-SCE separators. Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PDDA-TFSI) and poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) were used as polymers in the “polymer/LiTFSI/plasticizer”-based matrix. The initial phase of the selection criteria for the separator matrix involved assessing mechanical stability and ionic conductivity. Two optimized separator formulations were then tested for their electrochemical stability with both Li metal and HV composite cathodes. The results showed that Li/NMC622 cells with LP70_PVDF_HFP and LZ70_PDDA-TFSI separators exhibited more stable cycling performance compared to those with LZ90_PEO300k-based separators.
- University of Duisburg-Essen Germany
ceramic-rich composite separator, TK1001-1841, high voltage, Production of electric energy or power. Powerplants. Central stations, Industrial electrochemistry, composite electrolyte, solid-state battery, solid-state electrolyte, Elektrotechnik, TP250-261
ceramic-rich composite separator, TK1001-1841, high voltage, Production of electric energy or power. Powerplants. Central stations, Industrial electrochemistry, composite electrolyte, solid-state battery, solid-state electrolyte, Elektrotechnik, TP250-261
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
