
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Development of Flow Fields for Zinc Slurry Air Flow Batteries

The flow field design and material composition of the electrode plays an important role in the performance of redox flow batteries, especially when using highly viscous liquids. To enhance the discharge power density of zinc slurry air flow batteries, an optimum slurry distribution in the cell is key. Hence, several types of flow fields (serpentine, parallel, plastic flow frames) were tested in this study to improve the discharge power density of the battery. The serpentine flow field delivered a power density of 55 mW∙cm−2, while parallel and flow frame resulted in 30 mW∙cm−2 and 10 mW∙cm−2, respectively. Moreover, when the anode bipolar plate material was changed from graphite to copper, the power density of the flow frame increased to 65 mW∙cm−2, and further improvement was attained when the bipolar plate material was further changed to copper–nickel. These results show the potential to increase the power density of slurry-based flow batteries by flow field optimization and design of bipolar plate materials.
- Techniserv (Czechia) Czech Republic
- University of Chemistry and Technology Czech Republic
- Fraunhofer Society Germany
- Karlsruhe University of Applied Sciences Germany
- Fraunhofer Institute for Chemical Technology Germany
zinc oxidation, TK1001-1841, zinc slurry air flow battery, Production of electric energy or power. Powerplants. Central stations, Industrial electrochemistry, flow fields, slurry flow battery, TP250-261
zinc oxidation, TK1001-1841, zinc slurry air flow battery, Production of electric energy or power. Powerplants. Central stations, Industrial electrochemistry, flow fields, slurry flow battery, TP250-261
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
