Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Batteriesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Batteries
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Batteries
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Critical Analysis of Helical and Linear Channel Liquid Cooling Designs for Lithium-Ion Battery Packs

Authors: Rob Lloyd; Mohammad Akrami;

A Critical Analysis of Helical and Linear Channel Liquid Cooling Designs for Lithium-Ion Battery Packs

Abstract

Thermal management systems are integral to electric and hybrid vehicle battery packs for maximising safety and performance since high and irregular battery temperatures can be detrimental to these criteria. Lithium-ion batteries are the most commonly used in the electric vehicle (EV) industry because of their high energy and power density and long life cycle. Liquid cooling provides superior performance with low power draw and high heat transfer coefficient. Two liquid cooling designs-the Linear Channel Design (LCD) and Helical Channel Design (HCD)-underwent multiple numerical and geometrical optimisations, where inlet mass flow rate, channel diameter, and inlet and outlet locations were analysed using CFD (computational fluid dynamics). The primary objectives were to maintain maximum temperatures and thermal uniformity within the operational limits derived from the literature. These were both achieved with the LCD using a mass flow rate of 7.50E-05 kgs−1. The Tmax goal was met for the HCD but not the thermal uniformity goal. The LCD achieved 1.796 K lower in maximum temperature and 8.740 K lower in temperature difference compared to the HCD, proving itself superior in both metrics. The HCD required a higher mass flow rate than the LCD to regulate temperatures, resulting in an undesirably high power consumption.

Related Organizations
Keywords

TK1001-1841, helical channel, lithium-ion battery; thermal management; liquid cooling; linear channel; helical channel; design optimisation; electric vehicle, lithium-ion battery, liquid cooling, TP250-261, Production of electric energy or power. Powerplants. Central stations, Industrial electrochemistry, design optimisation, thermal management, linear channel

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research