
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Electrolyte Optimization to Improve the High-Voltage Operation of Single-Crystal LiNi0.83Co0.11Mn0.06O2 in Lithium-Ion Batteries

Single-crystal Ni-rich layered oxide materials LiNi1−x−yCoxMnyO2 (NCM, 1 – x − y ≥ 0.6) are emerging as promising cathode materials that do not show intergranular cracks as a result of the lack of grain boundaries and anisotropy of the bulk structure, enabling extended cyclability in lithium-ion batteries (LIBs) operating at high voltage. However, SC-NCM materials still suffer from capacity fading upon extended cycling. This degradation of capacity can be attributed to a reconstruction of the surface. A phase transformation from layered structures to disordered spinel/rock-salt structures was found to be responsible for impedance growth and capacity loss. Film-forming additives are a straightforward approach for the mitigation of surface reconstruction via the formation of a robust protection layer at the cathode’s surface. In this work, we investigate various additives on the electrochemical performance of single-crystal LiNi0.83Co0.11Mn0.06O2 (SC-NCM83). The results demonstrate that the use of 1% lithium difluoroxalate borate (LiDFOB) and 1% lithium difluorophosphate (LiPO2F2) additives substantially enhanced the cycling performance (with a capacity retention of 93.6% after 150 cycles) and rate capability in comparison to the baseline electrolyte (72.7%) as well as electrolytes using 1% LiDFOB (90.5%) or 1% LiPO2F2 (88.3%) individually. The superior cycling stability of the cell using the combination of both additives was attributed to the formation of a conformal cathode/electrolyte interface (CEI) layer, resulting in a stabilized bulk structure and decreased impedance upon long-term cycling, as evidenced via a combination of state-of-the-art analytical techniques.
- Central South University China (People's Republic of)
- ETH Zurich Switzerland
- Central South University China (People's Republic of)
- Karlsruhe Institute of Technology Germany
- Institute of Nanotechnology United Kingdom
Technology, TK1001-1841, decreased impedance, ddc:600, Production of electric energy or power. Powerplants. Central stations, Industrial electrochemistry, enhanced cycling performance, info:eu-repo/classification/ddc/600, 600, high-voltage operation; enhanced cycling performance; decreased impedance; conformal cathode/electrolyte interface layer, conformal cathode/electrolyte interface layer, high-voltage operation, TP250-261
Technology, TK1001-1841, decreased impedance, ddc:600, Production of electric energy or power. Powerplants. Central stations, Industrial electrochemistry, enhanced cycling performance, info:eu-repo/classification/ddc/600, 600, high-voltage operation; enhanced cycling performance; decreased impedance; conformal cathode/electrolyte interface layer, conformal cathode/electrolyte interface layer, high-voltage operation, TP250-261
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
