
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Methodology of Creating a Synthetic, Urban-Specific Weather Dataset Using a Microclimate Model for Building Energy Modelling

The relationship between outdoor microclimate and indoor building conditions requires the input of hourly weather data on the typical meteorological characteristics of the specific location. These data, known as typical meteorological year (TMY), are mainly deduced from the multi-year records of meteorological stations outside urban centres, preventing the actual complex interactions between solar radiation, wind speed, and high urban density. These factors create the urban heat island effect and higher ambient air temperatures, skewing the assumptions for energy demand in buildings. This paper presents a computational method for assessing the effect of the urban climate in the generation of typical weather data for dynamic energy calculations. As such, the paper discusses an evaluation method of pairing ENVI-met 4 microclimate and IES-VE building energy modelling software to produce a typical urban specific weather dataset (USWDs) that reflects the actual microclimatic conditions. The ENVI-met results for the outdoor microclimate conditions were employed to determine the thermal boundaries for the IES-VE, and then used to compute the building’s energy consumption. The energy modelling that employed the USWDs achieved better performance compared to the TMY, as the former had just a 6% variation from the actual electricity consumption of the building compared to 15% for the latter.
- University of Newcastle Australia Australia
- University of Newcastle Australia Australia
- United Arab Emirates University United Arab Emirates
- United Arab Emirates University United Arab Emirates
- Newcastle University United Kingdom
ENVI-met; energy modelling; microclimate; urban specific weather dataset (USWDs), Building construction, energy modelling, ENVI-met, urban specific weather dataset (USWDs), microclimate, TH1-9745
ENVI-met; energy modelling; microclimate; urban specific weather dataset (USWDs), Building construction, energy modelling, ENVI-met, urban specific weather dataset (USWDs), microclimate, TH1-9745
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
