
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Energy-Performance Evaluation with Revit Analysis of Mathematical-Model-Based Optimal Insulation Thickness

This study investigates the optimum insulation thickness value using MATLAB Optimization Toolbox based on a mathematical model for sandwich walls that are formed with different insulation-building materials by different fuel types for a particular city located in the second climatic region of Turkey. In the second stage of study, using the BIM-based Revit simulation program, a building was designed with the same building-insulation materials under the same climate conditions. The six different wall performances were compared for the designed building. The study proposes a comprehensive approach by combining technical and economic factors in the sustainable design of buildings. The computational results indicate that using different energy alternatives has a significant impact on the air quality in residential areas. The lowest value is reached when natural gas is used. The energy cost savings change from 7.56 to 14.12 TRY/m2 for external walls. While payback periods vary between 2.15 and 3.76 years for external walls, the lowest period for all wall types is obtained for electricity, which has a high cost. The optimum insulation thickness for 10 years of lifetime varies between 0.02 and 0.16 m. This study reflects that the highest optimal insulating thickness is reached when electricity is utilized as the energy source for all wall types. According to the Revit analysis, the lowest energy consumption of 21,677 kWh during one year using natural gas was obtained for a building material of porous light brick and an insulation material of glass wool.
- Inonu University Turkey
- Fırat University Turkey
- Fırat University Turkey
- Inonu University Turkey
Building construction, optimum insulation thickness, environmental impact, energy efficiency, TH1-9745
Building construction, optimum insulation thickness, environmental impact, energy efficiency, TH1-9745
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
