Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Buildingsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Buildings
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Buildings
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of Phase Change Materials for Pre-Cooling of Supply Air into Air Conditioning Systems in Extremely Hot Climates

Authors: Usman Masood; Mahmoud Haggag; Ahmed Hassan; Mohammad Laghari;

Evaluation of Phase Change Materials for Pre-Cooling of Supply Air into Air Conditioning Systems in Extremely Hot Climates

Abstract

This research investigates the use of phase change materials (PCMs) in thermal energy storage (TES) unit-based cooling systems to increase the efficiency of air conditioners (ACs) by reducing the air inlet temperature. This study aims to evaluate different configurations of PCM enclosures, and different PCMs (paraffin and salt hydrate), by changing the speed of inlet air to achieve heat reduction of inlet air. The study includes experimental and simulation investigations. Every configuration simulates the hot-season atmospheric conditions of the UAE. A duct containing enclosures of paraffin RT-31 and salt hydrate (calcium chloride hexahydrate) was used for the simulation study using ANSYS/Fluent. A conjugate heat transfer model employing an enthalpy-based formulation is developed to predict the optimized PCM number of series and optimum airflow rate. Four designs of the AC duct were modelled and evaluated that contained one to four series of PCM containers subjected to different levels of supplied air velocities ranging from 1 m/s–4 m/s. The simulation study revealed that employing four series (Design 4) of PCM enclosures at a low air velocity of 1 m/s enhanced the pre-cooling performance and reduced the outlet air temperature to 33 °C, yielding a temperature drop up to 13 °C. The performance of salt hydrate (calcium chloride hexahydrate) was observed to be better than paraffin (RT-31) in terms of the cooling effect. Characterization of paraffin wax (RT-31) and salt hydrate was performed to establish the thermophysical properties. The experimental setup based on a duct with integrated PCM enclosures was studied. The experiment was repeated for three days as the repeatability test incorporating RT-31 as the PCM and a 3 °C maximum temperature drop was observed. The drop in the outlet air temperature of the duct system quantifies the cooling effect. Net heat reduction was around 16%.

Related Organizations
Keywords

Building construction, latent heat thermal energy storage (LHTES), phase change materials (PCMs), buildings, cooling load, thermal energy storage (TES), TH1-9745, heat transfer augmentation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold