
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Analysis of Energy Consumption and Economy of Regional Gas Tri-Supply Composite System

handle: 10397/110223
With the development of Chinese society, there is an increasing demand for emissions reduction and the stable operation of the power grid. Regional comprehensive energy supply systems have entered the public’s view owing to their advantages of reducing capacity, unified dispatch, improving efficiency, and reducing energy consumption. This paper focuses on a system under construction in Chongqing, which adopts a combined gas tri-supply (combined cooling, heat, and power, CCHP) and dynamic ice storage cooling system as the research object. By establishing a mathematical model for the simulation research, this study examines the start–stop priority sequence of the gas tri-supply subsystem and the heat pump subsystem under the ice storage priority strategy in winter and summer and proposes corresponding optimization solutions. By comparing the annual operating energy consumption of the system, we conclude that the gas tri-supply composite system has good economic efficiency and peak-shaving capability, indicating that regional gas tri-supply composite systems have great application potential in the future. The proposed optimized operation strategy and simulated energy consumption calculation provide theoretical guidance for the construction and operation of both this project and similar projects.
- Hong Kong Polytechnic University China (People's Republic of)
- Hong Kong Polytechnic University (香港理工大學) China (People's Republic of)
- Hong Kong Polytechnic University (香港理工大學) Hong Kong
- Hong Kong Polytechnic University (香港理工大學) Hong Kong
- Chongqing University China (People's Republic of)
CCHP, Building construction, Ice storage and cold water storage, 330, peak shaving, Control strategy, composite system, control strategy, Composite system, Peak shaving, ice storage and cold water storage, TH1-9745
CCHP, Building construction, Ice storage and cold water storage, 330, peak shaving, Control strategy, composite system, control strategy, Composite system, Peak shaving, ice storage and cold water storage, TH1-9745
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
