
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Environmental Impacts of Light Sources in Buildings: Analysis of Environmental Product Declarations (EPDs) in European Union

Benchmark studies of the environmental impacts of buildings often overlook the contribution of lighting systems. This omission presents a significant knowledge gap, especially given the growing focus on energy-efficient technologies and sustainable building designs. To address this gap, the life cycle assessment method was used to calculate the environmental impacts of lighting systems, focusing on the Global Warming Potential (GWP) indicator. An in-depth review of databases and programs across the 27 European Union member states was also conducted. The study analyzed both the absolute and relative contributions of lighting systems to the overall environmental impacts of buildings, with a specific focus on the situation in Denmark. A total of 101 Environmental Product Declarations (EPDs) covering 753 LED lighting products were identified. Material-related impacts accounted for 1–12% of the total GWP, while energy used during operations contributed 6–24%. These results emphasize the importance of both embodied and operational impacts. Improving the luminous efficacy of lighting systems emerges as a more effective and feasible strategy to reduce a building’s GWP than lowering overall energy use or grid carbon intensity. In countries with high-carbon electricity, reducing the operational impacts is critical. Elsewhere, selecting lighting systems with low embodied impacts is also essential.
life-cycle assessment, Building construction, climate change, lighting systems, carbon emission intensity, TH1-9745
life-cycle assessment, Building construction, climate change, lighting systems, carbon emission intensity, TH1-9745
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
