
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Development of a Façade Assessment and Design Tool for Solar Energy (FASSADES)

Planning energy-efficient buildings which produce on-site renewable energy in an urban context is a challenge for all involved actors in the planning process. The primary objective of this study was to develop a façade assessment and design tool for solar energy (FASSADES) providing the necessary information for all stakeholders in the design process. The secondary objective was to demonstrate the tool by performing an assessment analysis of a building block. The FASSADES tool is a DIVA4Rhino script, combining Radiance/Daysim and EnergyPlus for simulating the annual production of solar thermal and photovoltaic systems on facades, the cost-effectiveness of the solar energy system, and the payback time. Different output methods are available; graphically within the 3D drawing environment and numerically within post-processing software. The tool was tested to analyse a building block within a city under Swedish conditions. Output of the developed tool showed that shading from nearby buildings greatly affects the feasibility of photovoltaic and solar thermal systems on facades.
- Lund University Sweden
- LUND UNIVERSITY Sweden
density, Building construction, assessment, solar energy, facade, urban planning, solar thermal, photovoltaics, solar energy; solar thermal; photovoltaics; density; facade; assessment; feasibility; urban planning, TH1-9745, feasibility
density, Building construction, assessment, solar energy, facade, urban planning, solar thermal, photovoltaics, solar energy; solar thermal; photovoltaics; density; facade; assessment; feasibility; urban planning, TH1-9745, feasibility
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
