Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Catalystsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Catalysts
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Catalysts
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Catalysts
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synthesis of Lipase-Immobilized CeO2 Nanorods as Heterogeneous Nano-Biocatalyst for Optimized Biodiesel Production from Eruca sativa Seed Oil

Authors: Anam Fatima; Muhammad Waseem Mumtaz; Hamid Mukhtar; Sadia Akram; Tooba Touqeer; Umer Rashid; Muhammad Raza Ul Mustafa; +2 Authors

Synthesis of Lipase-Immobilized CeO2 Nanorods as Heterogeneous Nano-Biocatalyst for Optimized Biodiesel Production from Eruca sativa Seed Oil

Abstract

Biodiesel has emerged as one of the most attractive alternative energy sources to meet the growing needs of energy. Many approaches have been adopted for biodiesel synthesis. In the present work, biodiesel was produced from non-edible Eruca sativa oil using nano-biocatalyst-catalysed transesterification. Nano-biocatalyst (CeO2@PDA@A. terreus Lipase) was developed via the immobilization of lipase on polydopamine coated ceria nanorods, and CeO2 nanorods were developed via a hydrothermal process. The mean diameter of nanorods were measured to be 50–60 nm, while their mean length was 150–200 nm. Lipase activity before and after immobilization was measured to be 18.32 and 16.90 U/mg/min, respectively. The immobilized lipase depicted high stability at high temperature and pH. CeO2@PDA@A. terreus Lipase-catalysed transesterification resulted in 89.3% yield of the product. Process optimization through response surface methodology was also executed, and it was depicted that the optimum/maximum E. sativa oil-based biodiesel yield was procured at conditions of 10% CeO2@PDA@A. terreus Lipase, 6:1 methanol/oil ratio, 0.6% water content, 35 °C reaction temperature, and 30 h reaction time. The fuel compatibility of synthesized biodiesel was confirmed via the estimation of fuel properties that were in agreement with the ASTM D standard. The nanorods and dopamine-modified nanorods were characterized by FTIR spectroscopy, SEM, and energy dispersive X-ray (EDX), while conversion of E. sativa oil to biodiesel was confirmed by GC/MS and FTIR spectroscopy. Conclusively, it was revealed that CeO2@PDA@A. terreus Lipase has potential to be employed as an emphatic nano-biocatalyst.

Country
Malaysia
Keywords

660, <i>Aspergillus terreus</i> Lipase, Chemical technology, biodiesel, TP1-1185, Chemistry, CeO<sub>2</sub> nanorods, <i>aspergillus terreus</i> lipase, ceo<sub>2</sub> nanorods, optimization, QD1-999, polydopamine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
gold