
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Recent Advances in Catalytic Conversion of Biomass to 2,5-Furandicarboxylic Acid

Converting biomass into high value-added compounds has attracted great attention for solving fossil fuel consumption and global warming. 5-Hydroxymethylfurfural (HMF) has been considered as a versatile biomass-derived building block that can be used to synthesize a variety of sustainable fuels and chemicals. Among these derivatives, 2,5-furandicarboxylic acid (FDCA) is a desirable alternative to petroleum-derived terephthalic acid for the synthesis of biodegradable polyesters. Herein, to fully understand the current development of the catalytic conversion of biomass to FDCA, a comprehensive review of the catalytic conversion of cellulose biomass to HMF and the oxidation of HMF to FDCA is presented. Moreover, future research directions and general trends of using biomass for FDCA production are also proposed.
- Qilu University of Technology China (People's Republic of)
- Qilu University of Technology China (People's Republic of)
5-hydroxymethylfurfural, biomass, biocatalysis, Chemical technology, 2,5-furandicarboxylic acid, TP1-1185, Chemistry, QD1-999
5-hydroxymethylfurfural, biomass, biocatalysis, Chemical technology, 2,5-furandicarboxylic acid, TP1-1185, Chemistry, QD1-999
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).33 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
