
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Photo-Induced Preparation of Ag@MOF-801 Composite Based Heterogeneous Nanocatalyst for the Production of Biodiesel

Hybrid materials based on metal-organic frameworks (MOFs) and nanoparticles (NPs) have gained considerable popularity in a variety of applications. Particularly, these types of materials have demonstrated excellent efficiency in heterogeneous catalysis due to the synergistic effect between the components. Herein, we report a simple, eco-friendly, photocatalytic method for the fabrication of Zr containing MOF-801 and a silver (Ag) NPs-based hybrid (Ag@MOF-801). In this method, the photocatalytic property of the central metal ion (Zr) of MOF was exploited to promote the formation and deposition of Ag NPs on the surface of the MOF-801 under the irradiation of visible light. The successful incorporation of Ag NPs was ascertained by powder X-ray diffraction (XRD) and UV-Vis analysis, while the morphology and surface area of the sample was determined by N2 adsorption–desorption and scanning electron microscopy (SEM), respectively. The resulting Ag@MOF-801 hybrid served as a highly efficient catalyst for the transesterification of used vegetable oil (UVO) for the production of biodiesel. The Ag@MOF-801 catalyst exhibited superior catalytic activity compared to its pristine MOF-801 counterpart due to the enhanced surface area of the material.
- King Saud University Saudi Arabia
- King Saud University Saudi Arabia
nanocatalyst, Ag nanoparticles, Chemical technology, biodiesel, TP1-1185, metal-organic framework, Chemistry, metal-organic framework; Zr-fumarate-MOF; Ag nanoparticles; nanocatalyst; biodiesel, QD1-999, Zr-fumarate-MOF
nanocatalyst, Ag nanoparticles, Chemical technology, biodiesel, TP1-1185, metal-organic framework, Chemistry, metal-organic framework; Zr-fumarate-MOF; Ag nanoparticles; nanocatalyst; biodiesel, QD1-999, Zr-fumarate-MOF
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
