
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biocatalytic Pickering Emulsions Stabilized by Lipase-Immobilized Carbon Nanotubes for Biodiesel Production

doi: 10.3390/catal8120587
Biocatalytic Pickering Emulsions Stabilized by Lipase-Immobilized Carbon Nanotubes for Biodiesel Production
Biodiesel is a promising renewable energy source that can replace fossil fuel, but its production is limited by a lack of high-efficiency catalysts for mass production and popularization. In this study, we developed a biocatalytic Pickering emulsion using multiwall carbon nanotube-immobilized Candida antarctica lipase B (CALB@PE) to produce biodiesel, with J. curcas L. seed oil and methanol as substrates. The morphology of CALB@PE was characterized in detail. A central composite design of the response surface methodology (CCD-RSM) was used to study the effects of the parameters on biodiesel yield, namely the amount of J. curcas L. seed oil (1.5 g), molar ratio of methanol to oil (1:1–7:1), CALB@PE dosage (20–140 mg), temperature (30–50 °C), and reaction time (0–24 h). The experimental responses were fitted with a quadratic polynomial equation, and the optimum reaction conditions were the methanol/oil molar ratio of 4.64:1, CALB@PE dosage of 106.87 mg, and temperature of 34.9 °C, with a reaction time of 11.06 h. A yield of 95.2%, which was basically consistent with the predicted value of 95.53%, was obtained. CALB@PE could be reused up to 10 times without a substantial loss of activity. CALB@PE exhibited better reusability than that of Novozym 435 in the process of biodiesel production.
- Hebei University of Technology China (People's Republic of)
- Hebei University of Technology China (People's Republic of)
Chemical technology, biodiesel, multiwalled carbon nanotubes (MWCNTs), TP1-1185, response surface methodology, Chemistry, Pickering emulsion, QD1-999
Chemical technology, biodiesel, multiwalled carbon nanotubes (MWCNTs), TP1-1185, response surface methodology, Chemistry, Pickering emulsion, QD1-999
2 Research products, page 1 of 1
- 2005IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
