Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cells
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cells
Article . 2025
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cells
Article . 2025
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cells
Article . 2025
Data sources: u:cris
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Testing the Purity of Limnospira fusiformis Cultures After Axenicity Treatments

Authors: Michael Schagerl; Alexander Kaptejna; Fabian Polz; Sameh S. Ali; Shuhao Huo; Joana Seneca; Petra Pjevac; +1 Authors

Testing the Purity of Limnospira fusiformis Cultures After Axenicity Treatments

Abstract

Contaminations are challenging for monocultures, as they impact the culture conditions and thus influence the growth of the target organism and the overall biomass composition. In phycology, axenic cultures comprising a single living species are commonly strived for both basic research and industrial applications, because contaminants reduce significance for analytic purposes and interfere with the safety and quality of commercial products. We aimed to establish axenic cultures of Limnospira fusiformis, known as the food additive “Spirulina”. Axenicity is strived because it ensures that pathogens or harmful microorganisms are absent and that the harvested biomass is consistent in terms of quality and composition. For the axenic treatment, we applied sterile filtration, ultrasonication, pH treatment, repeated centrifugation, and administration of antibiotics. For testing axenicity, we considered the most common verification method plate tests with Lysogeny Broth (LB) medium, which indicated axenicity after treatments were performed. In addition, we included plate tests with Reasoner’s 2A (R2A) agar and modified Zarrouk+ medium, the latter comparable to the biochemical properties of L. fusiformis’ cultivation medium. In contrast to LB plates, the other media, particularly Zarrouk+, indicated bacterial contamination. We conclude that LB-agar plates are inappropriate for contamination screening of extremophiles. Contamination was also verified by cultivation-independent methods like flow cytometry and 16S rRNA genome amplicon sequencing. We detected taxa of the phyla Proteobacteria, Bacteriodota, Firmicutes and to a lesser extent Verrucomicrobiota. Contaminants are robust taxa, as they survived aggressive treatments. Sequencing data suggest that some of them are promising candidates for in-depth studies to commercially exploit them.

Country
Austria
Related Organizations
Keywords

QH573-671, Axenic Culture, algal culture, 106059 Microbiome research, Article, Culture Media, bacterial contamination, 106059 Mikrobiomforschung, cultivation, plate test, Spirulina, Biomass, Cytology, sterile

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities
Energy Research