
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermochemical Conversion Processes as a Path for Sustainability of the Tire Industry: Carbon Black Recovery Potential in a Circular Economy Approach

The common use of tires is responsible for the production of large quantities of waste worldwide, which are landfilled or energetically recovered, with higher economical cost and known environmentally harmful consequences. This type of problem must be studied, and all efforts must be conducted to eliminate, or at least mitigate, such high costs. The use of thermochemical conversion processes, such as pyrolysis, can allow the recycling and the reuse of raw materials for the tire industry, namely, in the production of carbon black, usually produced using the controlled combustion of fossil fuels. This article reports the production of torrefied and carbonized waste tire samples using a laboratorial procedure, and their subsequent laboratory characterization, specifically the elemental and proximate analysis. This preliminary approach found that carbon concentration in the produced rubber char reached values higher than 75%, indicating the possibility of its reuse in the production of carbon black to in turn be used in the production of new tires or other industrial rubber materials. The possibility of using this rubber char for other uses, such as energy recovery, is still depending on further studies, namely, the evaluation of the amount of sulfur present in the final product.
- Instituto Politécnico de Viana do Castelo Portugal
- Cardiff University United Kingdom
- Cardiff University United Kingdom
- Centro de Estudos do Ambiente e do Mar Portugal
- University of Aveiro Portugal
circular economy, Environmental engineering, TA170-171, sustainability, Environmental technology. Sanitary engineering, rubber char, rubber char; thermochemical conversion processes; circular economy; sustainability, TD1-1066, thermochemical conversion processes
circular economy, Environmental engineering, TA170-171, sustainability, Environmental technology. Sanitary engineering, rubber char, rubber char; thermochemical conversion processes; circular economy; sustainability, TD1-1066, thermochemical conversion processes
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
