
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Bio Ethanol Production from Rice Straw Saccharification via Avicelase Gene in E. coli Recombinant Strain

The most abundant organic carbon source on Earth is cellulosic materials. Its main resources are crop straws which are not commonly used and produce environmental pollution. These resources can be a site of biological hydrolysis to primary sugars by cellulase enzymes, in which avicelase is the most efficient enzyme in the cellulase family. This work aimed to clone the avicelase gene, transfer it to E. coli, optimize its expression, saccharify rice straw to its primary sugars, and ferment it to bioethanol. The avicelase gene was cloned from the Bacillus subtilis strain and cloned into two E. coli (i.e., DH5α and Bl21) strains. The optimized avicelase activity was described by testing the effect of different media and growth conditions including different carbon and nitrogen sources, as well as pHs and shaking or static conditions. Avicelase enzyme was extracted and used to saccharify rice straw. The obtained glucose was subjected to fermentation by Saccharomyces cerevisiae F.307 under an aerobic condition growth for the production of bioethanol. The ethanol yield was 5.26% (v/v), and the fermentation efficiency was 86%. This study showed the ability to clone one of the cellulolytic genes (i.e., avicelase) for the valorization of rice straw for producing renewable energy and bioethanol from cellulolytic wastes such as rice straw.
- Ain Shams University Egypt
- Ain Shams University Egypt
- National Research Centre Egypt
rice straw; <i>avicelase</i> gene; cloning; expression optimization; bioethanol, cloning, rice straw, Environmental engineering, <i>avicelase</i> gene, TA170-171, expression optimization, Environmental technology. Sanitary engineering, TD1-1066, bioethanol
rice straw; <i>avicelase</i> gene; cloning; expression optimization; bioethanol, cloning, rice straw, Environmental engineering, <i>avicelase</i> gene, TA170-171, expression optimization, Environmental technology. Sanitary engineering, TD1-1066, bioethanol
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
