
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Addressing Plastic Waste Challenges in Africa: The Potential of Pyrolysis for Waste-to-Energy Conversion

Plastic waste poses a significant challenge in Africa and around the world, with its volume continuing to increase at an alarming rate. In Africa, an estimated 25–33% of daily waste is made up of plastic, posing a threat to the environment, marine life, and human health. One potential solution to this problem is waste-to-energy recycling, such as pyrolysis, which involves the conversion of waste materials into oil, char, and non-condensable gasses through a thermochemical process in the absence of oxygen. Given the abundance of waste in Africa and the continent’s energy challenges, pyrolysis offers a sustainable solution. This review delves into the concept of pyrolysis, its products, thermodynamics, and endothermic kinetics, presenting it as a promising way to address the plastic waste problem in Africa. Despite the African Union’s goal to recycle plastic waste, the continent faces significant barriers in achieving this target, including infrastructural, economic, and social difficulties. It is crucial to implement sustainable strategies for managing plastic waste in Africa to mitigate environmental degradation and promote a cleaner and healthier living environment. Pyrolysis technology is highlighted as a viable solution for plastic waste management, as it can convert plastic waste into valuable byproducts such as oil, char, and syngas. Case studies from countries like South Africa and Nigeria demonstrate the potential for scaling up pyrolysis to address waste management issues while generating energy and job opportunities. This review underscores the need for investment, regulatory support, and public awareness to overcome the challenges and unlock the full potential of pyrolysis in Africa. Embracing pyrolysis as a method for managing plastic waste could lead to significant environmental and economic benefits for the continent.
- Kampala International University Uganda
- Kampala International University Uganda
- Ilmenau University of Technology Germany
plastic waste management, waste-to-energy, plastic recycling, circular economy, sustainable waste management, Environmental engineering, TA170-171, pyrolysis, Environmental technology. Sanitary engineering, TD1-1066
plastic waste management, waste-to-energy, plastic recycling, circular economy, sustainable waste management, Environmental engineering, TA170-171, pyrolysis, Environmental technology. Sanitary engineering, TD1-1066
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
