Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Clean Technologiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clean Technologies
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clean Technologies
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Financial Feasibility of Bioenergy Products Based on Forest Residues: Case of Costa Rica Northern

Authors: Juan Carlos Valverde; Dagoberto Arias-Aguilar; Rooel Campos-Rodríguez;

Financial Feasibility of Bioenergy Products Based on Forest Residues: Case of Costa Rica Northern

Abstract

This research identified the optimal scenarios to produce three bioenergy outputs: dual generation (electricity and heat), electricity, and heat in two regions located in the northern part of Costa Rica. Two biomass conversion technologies—boilers and gasification—with 2, 5, and 10 MW production capacities were assessed to ascertain the most suitable technology-capacity pairing for each bioproduct. To this end, a comprehensive financial model was developed to maximize the net present value. Following this, the equilibrium point for biomass supply and demand was ascertained, alongside estimations of the associated costs and energy utility. The findings indicated that the three bioenergy products could be completed within the local energy market at prices below 0.14 USD/kWh, with maximum supply distances of 90 km. The boiler and turbine technology proved most suitable for dual and electricity generation, with capacities ranging between 2 MW and 5 MW, where differentiation was influenced by biomass transportation. Furthermore, heat generation demonstrated financial viability at a capacity of 2 MW. In the evaluation of supply-demand break-even points, a maximum benefit of 26% was observed, with dual production yielding the highest benefits and heat production being the least favorable option due to the costs linked to biomass transportation and the low efficiency of energy transformation.

Keywords

biomass, GHG reduction, Environmental engineering, bioenergy, TA170-171, Environmental technology. Sanitary engineering, bioeconomy, energy efficiency, TD1-1066

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research