
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Financial Feasibility of Bioenergy Products Based on Forest Residues: Case of Costa Rica Northern

This research identified the optimal scenarios to produce three bioenergy outputs: dual generation (electricity and heat), electricity, and heat in two regions located in the northern part of Costa Rica. Two biomass conversion technologies—boilers and gasification—with 2, 5, and 10 MW production capacities were assessed to ascertain the most suitable technology-capacity pairing for each bioproduct. To this end, a comprehensive financial model was developed to maximize the net present value. Following this, the equilibrium point for biomass supply and demand was ascertained, alongside estimations of the associated costs and energy utility. The findings indicated that the three bioenergy products could be completed within the local energy market at prices below 0.14 USD/kWh, with maximum supply distances of 90 km. The boiler and turbine technology proved most suitable for dual and electricity generation, with capacities ranging between 2 MW and 5 MW, where differentiation was influenced by biomass transportation. Furthermore, heat generation demonstrated financial viability at a capacity of 2 MW. In the evaluation of supply-demand break-even points, a maximum benefit of 26% was observed, with dual production yielding the highest benefits and heat production being the least favorable option due to the costs linked to biomass transportation and the low efficiency of energy transformation.
- University of Concepción Chile
- University of Concepción Chile
biomass, GHG reduction, Environmental engineering, bioenergy, TA170-171, Environmental technology. Sanitary engineering, bioeconomy, energy efficiency, TD1-1066
biomass, GHG reduction, Environmental engineering, bioenergy, TA170-171, Environmental technology. Sanitary engineering, bioeconomy, energy efficiency, TD1-1066
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
