Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronics
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronics
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fast Health State Estimation of Lead–Acid Batteries Based on Multi-Time Constant Current Charging Curve

Authors: Chengti Huang; Na Li;

Fast Health State Estimation of Lead–Acid Batteries Based on Multi-Time Constant Current Charging Curve

Abstract

Lead–acid batteries are widely used, and their health status estimation is very important. To address the issues of low fitting accuracy and inaccurate prediction of traditional lead–acid battery health estimation, a battery health estimation model is proposed that relies on charging curve analysis using historical degradation data. This model does not require the assistance of battery mechanism models or empirical degradation models, instead, it is combined with improved deep learning algorithms. A long short-term memory (LSTM) regression model was established, and parameter optimization was performed using the bat algorithm (BA). The experimental results show that the proposed model can achieve an accurate capacity estimation of lead–acid batteries.

Related Organizations
Keywords

TK7800-8360, feature extraction, deep learning model, lead–acid battery, Electronics, state of health estimation

Powered by OpenAIRE graph
Found an issue? Give us feedback