Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronics
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Methods for Determining Losses and Parameters of Cylindrical-Rotor Medium-Power Synchronous Generators

Authors: Krzysztof Komeza; Maria Dems;

Methods for Determining Losses and Parameters of Cylindrical-Rotor Medium-Power Synchronous Generators

Abstract

This paper presents the analytical and numerical application of a method to determine the parameters and power losses in the core of two medium-power synchronous generators. These generators are used as emergency power sources powered by diesel engines, gas engines, and gas turbines. They cover peak electricity demand but can also be used in traction drives. This article presents a new numerical method for determining losses in the generator core based on the use of a time-stepping solution using the FEM method and calculating these losses using analytical formulas. In calculating the losses for the FEM method, approximations of the loss characteristics of the sheet were used with a wide range of induction values and frequencies. This method is specific to the solution used and was adapted from the authors’ previous work on losses in induction machines. A one-phase winding with alternating voltage was supplied to determine the basic parameters in the form of synchronous reactance. Also, an important novelty is the introduction of a new method of determining the saturation state of the magnetic circuit, which significantly affects the machine parameters. The obtained results were used in analytical calculations and implemented in a computer program that allows for the calculation of electromagnetic parameters, operating characteristics, and core losses, taking into account additional losses, total losses, and efficiency, as well as machine parameters in unsteady operating states and the current characteristics of a three-phase symmetrical short circuit at the machine terminals. The calculations obtained were verified experimentally by measurements of real machines.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold