
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
High-Titer Methane from Organosolv-Pretreated Spruce and Birch

doi: 10.3390/en10030263
The negative impact of fossil fuels and the increased demand for renewable energy sources has led to the use of novel raw material sources. Lignocellulosic biomass could serve as a possible raw material for anaerobic digestion and production of biogas. This work is aimed at using forest biomass, both softwood (spruce) and hardwood (birch), as a raw material for anaerobic digestion. We examined the effect of different operational conditions for the organosolv pretreatment (ethanol content, duration of treatment, and addition of acid catalyst) on the methane yield. In addition, we investigated the effect of addition of cellulolytic enzymes during the digestion. We found that inclusion of an acid catalyst during organosolv pretreatment improved the yields from spruce, but it did not affect the yields from birch. Shorter duration of treatment was advantageous with both materials. Methane yields from spruce were higher with lower ethanol content whereas higher ethanol content was more beneficial for birch. The highest yields obtained were 185 mL CH4/g VS from spruce and 259.9 mL CH4/g VS from birch. Addition of cellulolytic enzymes improved these yields to 266.6 mL CH4/g VS and 284.2 mL CH4/g VS, respectively.
anaerobic digestion, Technology, birch, methane, T, Bioprocessteknik, Bioenergi, organosolv pretreatment, biogas; methane; lignocellulosic biomass; organosolv pretreatment; anaerobic digestion; birch; spruce, biogas, Bioenergy, Bioprocess Technology, lignocellulosic biomass, spruce
anaerobic digestion, Technology, birch, methane, T, Bioprocessteknik, Bioenergi, organosolv pretreatment, biogas; methane; lignocellulosic biomass; organosolv pretreatment; anaerobic digestion; birch; spruce, biogas, Bioenergy, Bioprocess Technology, lignocellulosic biomass, spruce
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
