Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2017
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Improved Multi-Infeed Effective Short-Circuit Ratio for AC/DC Power Systems with Massive Shunt Capacitors Installed

Authors: Shiwu Liao; Wei Yao; Xiaomeng Ai; Jinyu Wen; Qing Liu; Yanhong Jiang; Jian Zhang; +1 Authors

An Improved Multi-Infeed Effective Short-Circuit Ratio for AC/DC Power Systems with Massive Shunt Capacitors Installed

Abstract

The multi-infeed effective short-circuit ratio (MESCR) is widely used in indicating the strength of multi-infeed AC/DC power systems. However, when the widely used MESCR was adopted to evaluate the stability margin of the Eastern China Grid including three infeed ultra-high-voltage DC (UHVDC) and five high-voltage DC transmission lines in 2016, the MESCR result indicated the system was strong enough but in fact occasionally collapses after the N-1 contingency. To determine the reason for this conflict, this paper theoretically analyzes the limitations of the existing MESCR. The theoretical analysis reveals that when a large amount of capacitor compensations are concentratively installed in the system, the conventional MESCR will not be able to reflect the capacitor compensations’ influence on the system stability, and no matter how many capacitors are installed or where the capacitors are installed, the MESCR almost retains the same value; namely, the MESCR is saturated in such systems. To address the saturation problem of conventional MESCR, this paper proposes an improved multi-infeed effective short-circuit ratio (IMESCR) which considers the influences of all capacitor compensations by converting all capacitors installed throughout the system to virtual capacitors at the DC inverter station. Case studies are carried out based on the New England 39-bus system and the Eastern China Grid, respectively. The simulation results verify the theoretical analysis of the MESCR’s limitations in evaluating the stability of power systems with massive capacitors installed, and proves that the proposed IMESCR could accurately indicate the strength of AC/DC power systems. Therefore, the proposed IMESCR provides a new index for evaluating the stability margin of power systems with massive capacitor compensations installed.

Keywords

Technology, AC/DC power system, T, short-circuit ratio, capacitor compensation, multi-infeed effective short-circuit ratio (MESCR), AC/DC power system; short-circuit ratio; multi-infeed effective short-circuit ratio (MESCR); multi-infeed interaction factor (MIIF); capacitor compensation, multi-infeed interaction factor (MIIF)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Top 10%
Top 10%
gold