
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting

doi: 10.3390/en10050694
Electric load forecasting plays an important role in electricity markets and power systems. Because electric load time series are complicated and nonlinear, it is very difficult to achieve a satisfactory forecasting accuracy. In this paper, a hybrid model, Wavelet Denoising-Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EWKM), which combines k-Nearest Neighbor (KNN) and Extreme Learning Machine (ELM) based on a wavelet denoising technique is proposed for short-term load forecasting. The proposed hybrid model decomposes the time series into a low frequency-associated main signal and some detailed signals associated with high frequencies at first, then uses KNN to determine the independent and dependent variables from the low-frequency signal. Finally, the ELM is used to get the non-linear relationship between these variables to get the final prediction result for the electric load. Compared with three other models, Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EKM), Wavelet Denoising-Extreme Learning Machine (WKM) and Wavelet Denoising-Back Propagation Neural Network optimized by k-Nearest Neighbor Regression (WNNM), the model proposed in this paper can improve the accuracy efficiently. New South Wales is the economic powerhouse of Australia, so we use the proposed model to predict electric demand for that region. The accurate prediction has a significant meaning.
- Australian Catholic University Australia
- Queensland University of Technology Australia
- Lanzhou University China (People's Republic of)
- Australian Catholic University Australia
Technology, predict, T, 310, wavelet denoising, 620, electric load; predict; ELM; KNN regression; wavelet denoising, ELM, KNN regression, electric load
Technology, predict, T, 310, wavelet denoising, 620, electric load; predict; ELM; KNN regression; wavelet denoising, ELM, KNN regression, electric load
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).34 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
