
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Linking the Power and Transport Sectors—Part 2: Modelling a Sector Coupling Scenario for Germany

“Linking the power and transport sectors—Part 1” describes the general principle of “sector coupling” (SC), develops a working definition intended of the concept to be of utility to the international scientific community, contains a literature review that provides an overview of relevant scientific papers on this topic and conducts a rudimentary analysis of the linking of the power and transport sectors on a worldwide, EU and German level. The aim of this follow-on paper is to outline an approach to the modelling of SC. Therefore, a study of Germany as a case study was conducted. This study assumes a high share of renewable energy sources (RES) contributing to the grid and significant proportion of fuel cell vehicles (FCVs) in the year 2050, along with a dedicated hydrogen pipeline grid to meet hydrogen demand. To construct a model of this nature, the model environment “METIS” (models for energy transformation and integration systems) we developed will be described in more detail in this paper. Within this framework, a detailed model of the power and transport sector in Germany will be presented in this paper and the rationale behind its assumptions described. Furthermore, an intensive result analysis for the power surplus, utilization of electrolysis, hydrogen pipeline and economic considerations has been conducted to show the potential outcomes of modelling SC. It is hoped that this will serve as a basis for researchers to apply this framework in future to models and analysis with an international focus.
- RWTH Aachen University Germany
- Helmholtz Association of German Research Centres Germany
- Forschungszentrum Jülich GmbH Germany
- Forschungszentrum Jülich Germany
fuel cell vehicles (FCVs), surplus, Technology, power-to-gas, T, pipeline, 620, sector coupling (SC), hydrogen, sector coupling (SC); power-to-gas; hydrogen; pipeline; surplus; fuel cell vehicles (FCVs), info:eu-repo/classification/ddc/620
fuel cell vehicles (FCVs), surplus, Technology, power-to-gas, T, pipeline, 620, sector coupling (SC), hydrogen, sector coupling (SC); power-to-gas; hydrogen; pipeline; surplus; fuel cell vehicles (FCVs), info:eu-repo/classification/ddc/620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).115 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
