
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Fast Multi-Switched Inductor Balancing System Based on a Fuzzy Logic Controller for Lithium-Ion Battery Packs in Electric Vehicles

handle: 1959.3/438670
Based on a low cost multi-switched inductor balancing circuit (MSIBC), a fuzzy logic (FL) controller is proposed to improve the balancing performances of lithium-ion battery packs instead of an existing proportional-integral (PI) controller. In the proposed FL controller, a cell’s open circuit voltages (OCVs) and their differences in the pack are used as the inputs, and the output of the FL controller is the balancing current. The FL controller for the MSIBC has the advantage of maintaining high balancing currents over the existing PI controller in almost the entire balancing process for different lithium battery types. As a result, the proposed FL controller takes a much shorter time to achieve battery pack balancing, and thus more pack capacity can be recovered. This will help to improve the pack performance in electric vehicles and extend the serving time of the battery pack.
- Anhui University China (People's Republic of)
- Swinburne University of Technology Australia
- Swinburne University of Technology Australia
- Anhui University China (People's Republic of)
Technology, T, electric vehicles; fast balancing system; high efficiency of balancing system; fuzzy logic controller, fuzzy logic controller, 629, fast balancing system, high efficiency of balancing system, electric vehicles
Technology, T, electric vehicles; fast balancing system; high efficiency of balancing system; fuzzy logic controller, fuzzy logic controller, 629, fast balancing system, high efficiency of balancing system, electric vehicles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
