
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimizing Energy Efficiency in Operating Built Environment Assets through Building Information Modeling: A Case Study

doi: 10.3390/en10081167
Reducing carbon emissions and addressing environmental policies in the construction domain has been intensively explored with solutions ranging from energy efficiency techniques with building informatics to user behavior modelling and monitoring. Such strategies have managed to improve current practices in managing buildings, however decarbonizing the built environment and reducing the energy performance gap remains a complex undertaking that requires more comprehensive and sustainable solutions. In this context, building information modelling (BIM), can help the sustainability agenda as the digitalization of product and process information provides a unique opportunity to optimize energy-efficiency-related decisions across the entire lifecycle and supply chain. BIM is foreseen as a means to waste and emissions reduction, performance gap minimization, in-use energy enhancements, and total lifecycle assessment. It also targets the whole supply chain related to design, construction, as well as management and use of facilities, at the different qualifications levels (including blue-collar workers). In this paper, we present how building information modelling can be utilized to address energy efficiency in buildings in the operation phase, greatly contributing to achieving carbon emissions targets. In this paper, we provide two main contributions: (i) we present a BIM-oriented methodology for supporting building energy optimization, based on which we identify few training directions with regards to BIM, and (ii) we provide an application use case as identified in the European research project “Sporte2” to demonstrate the advantages of BIM in energy efficiency with respect to several energy metrics.
- Cardiff University United Kingdom
- Luxembourg Institute of Science and Technology Luxembourg
- Cardiff University United Kingdom
Technology, training, building information modeling, T, energy optimization, buildings, building information modeling; energy optimization; buildings; operation phase; training, operation phase
Technology, training, building information modeling, T, energy optimization, buildings, building information modeling; energy optimization; buildings; operation phase; training, operation phase
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).75 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
