
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Maximum Power Point Tracking Control of a Thermoelectric Generation System Using the Extremum Seeking Control Method

This study proposes and implements maximum power Point Tracking (MPPT) control on thermoelectric generation system using an extremum seeking control (ESC) algorithm. The MPPT is applied to guarantee maximum power extraction from the TEG system. The work has been carried out through modelling of thermoelectric generator/dc-dc converter system using Matlab/Simulink. The effectiveness of ESC technique has been assessed by comparing the results with those of the Perturb and Observe (P&O) MPPT method under the same operating conditions. Results indicate that ESC MPPT method extracts more power than the P&O technique, where the output power of ESC technique is higher than that of P&O by 0.47 W or 6.1% at a hot side temperature of 200 °C. It is also noted that the ESC MPPT based model is almost fourfold faster than the P&O method. This is attributed to smaller MPPT circuit of ESC compared to that of P&O, hence we conclude that the ESC MPPT method outperforms the P&O technique.
- King Fahd University of Petroleum and Minerals Saudi Arabia
- Nottingham Trent University United Kingdom
- King Fahd University of Petroleum and Minerals Saudi Arabia
- University of Bristol United Kingdom
Technology, MPPT algorithms, thermoelectric generators, Perturb and observe, T, 610, Extremum seeking control, 620, perturb and observe, thermoelectric generators; perturb and observe; MPPT algorithms; extremum seeking control, extremum seeking control, Thermoelectric generators
Technology, MPPT algorithms, thermoelectric generators, Perturb and observe, T, 610, Extremum seeking control, 620, perturb and observe, thermoelectric generators; perturb and observe; MPPT algorithms; extremum seeking control, extremum seeking control, Thermoelectric generators
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
