
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Large Eddy Simulation Analysis on Confined Swirling Flows in a Gas Turbine Swirl Burner

doi: 10.3390/en10122081
handle: 10547/622961
This paper describes a Large Eddy Simulation (LES) investigation into flow fields in a model gas turbine combustor equipped with a swirl burner. A probability density function was used to describe the interaction physics of chemical reaction and turbulent flow as liquid fuel was directly injected into the combustion chamber and rapidly mixed with the swirling air. Simulation results showed that heat release during combustion accelerated the axial velocity motion and made the recirculation zone more compact. As the combustion was taking place under lean burn conditions, NO emissions was less than 10 ppm. Finally, the effects of outlet contraction on swirling flows and combustion instability were investigated. Results suggest that contracted outlet can enhance the generation of a Central Vortex Core (CVC) flow structure. As peak RMS of velocity fluctuation profiles at center-line suggested the turbulent instability can be enhanced by CVC motion, the Power Spectrum Density (PSD) amplitude also explained that the oscillation at CVC position was greater than other places. Both evidences demonstrated that outlet contraction can increase the instability of the central field.
- Beihang University China (People's Republic of)
- University of Bedfordshire United Kingdom
- Tianjin University China (People's Republic of)
- University of Ottawa Canada
- University of Bedfordshire United Kingdom
Technology, T, swirl burner; swirl flow; central vortex core; large-eddy simulation; outlet contraction, outlet contraction, swirl burner, 532, central vortex core, swirl flow, large-eddy simulation
Technology, T, swirl burner; swirl flow; central vortex core; large-eddy simulation; outlet contraction, outlet contraction, swirl burner, 532, central vortex core, swirl flow, large-eddy simulation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
