
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Changes in Lignin Chemistry of Switchgrass due to Delignification by Sodium Hydroxide Pretreatment

doi: 10.3390/en11020376
Switchgrass was pretreated with sodium hydroxide (NaOH) at various concentrations and pretreatment times to investigate how delignification caused by NaOH affects its lignin chemistry. NaOH resulted in significant delignification ranging from 44.0 to 84.6% depending on pretreatment intensity. While there was no significant glucan loss due to NaOH pretreatment, higher NaOH concentrations removed xylan by up to 28.3%. Nitrobenzene oxidation (NBO) was used to study changes in lignin chemistry, and indicated that at higher NaOH concentrations, the amount of 4-hydroxygenzaldehyde (Hy) degraded from p-hydroxyphenyl propanol (H) lignin units was significantly reduced (p < 0.05). However, amounts of syringic (SA) and vanillic (VA) acids generated from syringyl (S) and guaiacyl (G) degradation were greater at higher NaOH concentration. S/G ratio (=0.62 raw switchgrass) did not significantly (p > 0.05) change with 15 min pretreatment, but it increased to 0.75 and 0.72, respectively, with 30 and 60 min pretreatments (p < 0.05). Increase in NaOH concentration did not significantly (p > 0.05) change S/G ratio, but H/G ratio (=0.48 raw switchgrass) decreased significantly to 0.14 regardless of pretreatment times. Overall, the H unit was found to be more susceptible to NaOH than S and G unit monolignols. Though changes in lignin chemistry due to NaOH concentration were observed, their impact on cellulolytic enzyme action during hydrolysis could not be fully understood. Further studies on lignin isolation may help to determine how these changes in lignin chemistry by NaOH impact cellulolytic enzymes.
- North Carolina Agricultural and Technical State University United States
- North Carolina Agricultural and Technical State University United States
Technology, p-hydroxyphenyl, nitrobenzene oxidation, T, switchgrass, guaiacyl, switchgrass; lignin chemistry; syringyl; guaiacyl; <i>p</i>-hydroxyphenyl; lignin monomer ratio; nitrobenzene oxidation, lignin chemistry, lignin monomer ratio, syringyl
Technology, p-hydroxyphenyl, nitrobenzene oxidation, T, switchgrass, guaiacyl, switchgrass; lignin chemistry; syringyl; guaiacyl; <i>p</i>-hydroxyphenyl; lignin monomer ratio; nitrobenzene oxidation, lignin chemistry, lignin monomer ratio, syringyl
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
