
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Proportional Resonant Controller for Suppressing Resonance in Grid Tied Multilevel Inverter

doi: 10.3390/en11051024
Photovoltaic (PV) resources are connected to power grid through voltage source inverters. The quality of power output from PV inverter should be in grid compliance of IEEE standard. In this regard, the deployment of appropriate low pass filters such as inductor (L), capacitor (C) or inductor capacitor inductor (LCL) is critical as they aid in minimizing the harmonics being injected into the grid. LCL filters are well entrenched but they bring in stability issue due to resonance and therefore a damping controller with suitable control logic is needed. In this work, to suppress resonance, a Proportional Resonant-Derivative (PR-D) controller has been designed, proposed, and compared with existing counterparts, i.e., two-degree of freedom controller (2DOF) and feedback current controller. The results exhibits that PR-D controller admits meliorate resonance damping and constancy when compared with the two other schemes. The whole system has been simulated in MATLAB/Simulink environment and a prototype has also been made to ensure the performance.
proportional resonant-derivative, Technology, two degrees of freedom, multilevel inverter, T, maximum power point tracking, photovoltaic; two degrees of freedom; proportional resonant-derivative; feedback current controller; maximum power point tracking; multilevel inverter, photovoltaic, feedback current controller
proportional resonant-derivative, Technology, two degrees of freedom, multilevel inverter, T, maximum power point tracking, photovoltaic; two degrees of freedom; proportional resonant-derivative; feedback current controller; maximum power point tracking; multilevel inverter, photovoltaic, feedback current controller
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
