Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2018
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Smart Hybrid Micro-Grid Integration for Optimal Power Sharing-Based Water Cycle Optimization Technique

Authors: Peter Makeen; R. A. Swief; T. S. Abdel-Salam; Noha H. El-Amary;

Smart Hybrid Micro-Grid Integration for Optimal Power Sharing-Based Water Cycle Optimization Technique

Abstract

Micro-Grid (MG) with hybrid power resources can supply electric loads independently. In case of surplus power, the neighborhood micro-grids can be integrated together in order to supply the overloaded micro-grid. The challenge is to select the most suitable, optimal and preferable micro-grid within a distributed network, which consists of islanded MGs, to form that integration. This paper presents an intelligent decision-making criteria based on the Weighted Arithmetic Mean (WAM) of different technical indices, for optimal selection of micro-grids integration in case of overloaded event due to either unusual increase in consumed power or any deficiency in power generation. In addition, overloading is expected due to excess increase or decrease in weather temperature. This may lead to extreme increase of load due to increase of air conditioning or heating loads respectively. The proposed arithmetic mean determination based on six multi-objective indices, which are voltage deviation, frequency deviation, reliability, power loss in transmission lines, electricity price and CO2 emission is applied. This work is developed through three main scenarios. The first scenario studies the effect of each index on the integrated micro-grid formation. The second scenario is the biased optimization analysis. In this stage, the optimal micro-grids integration is based on intentionally chosen multi-objective index weights to fulfil certain requirements. The third scenario targets the optimal selection of the multi-objective indices’ effectiveness weights for power system optimum redistribution. The sharing weights of each index will be optimally selected by Water Cycle Optimization Technique (WCOT) and Genetic Algorithm (GA) addressing the system optimal power sharing through optimum micro-grids re-formation (integration). WCOT and GA are simulated using MATLAB (R2017a, The MathWorks Ltd, Natick, MA, USA). The developed work is applied to a distributed network which consists of a five micro-grid tested system, with one overloaded micro-grid. The three modules are utilized for multi-objective analysis of different alternative micro-grids. Both WCOT and GA results are compared. In addition, it is investigated to find and validate the optimum solution. Final decision-making for optimal combination is determined, aiming to reach a perfect technical, economic and environmental solution. The results indicate that the optimal decision may be modified after each individual index weight exceeds a specific limit.

Keywords

Technology, Genetic Algorithm (GA), islanded micro-grid, T, decision-making, overloaded micro-grid, coupled micro-grid, Distributed Generators (DG); coupled micro-grid; decision-making; islanded micro-grid; overloaded micro-grid; Water Cycle Optimization Technique (WCOT); Genetic Algorithm (GA), Distributed Generators (DG), Water Cycle Optimization Technique (WCOT)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Top 10%
Top 10%
gold