
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Variable-Structure Multi-Resonant DC–DC Converter with Smooth Switching

doi: 10.3390/en11092240
In this paper, a variable-structure multi-resonant soft-switching DC–DC converter and its transient smooth control method are proposed. Through the introduction of auxiliary switches, the converter can flexibly adjust its structure among three operating modes. Two switching processes can be obtained. Thus, a wide voltage gain range is achieved within a narrow frequency range. Moreover, to eliminate the large voltage fluctuation during modes switching, a drive signal gradual adjustment control method is proposed. Consequently, smooth switching between different modes can be realized and the voltage fluctuation is suppressed effectively. Finally, a 200 W experimental prototype is established to verify the theoretical analyses. Soft-switching performances for power switches and diodes are both guaranteed. The highest efficiency is 98.2%. With the proposed transient control method, a basically constant 400 V output voltage is ensured within a wide input voltage range (80 V–600 V). In particular, the transient voltage fluctuations during two switching processes decrease from 38.4 V to 10.8 V and from 37.2 V to 8.4 V, respectively.
- Tianjin University China (People's Republic of)
- State Grid Corporation of China (China) China (People's Republic of)
- State Grid Corporation of China (China) China (People's Republic of)
multi-resonant, Technology, smooth switching, DC–DC converter, T, soft switching, variable structure, transient control
multi-resonant, Technology, smooth switching, DC–DC converter, T, soft switching, variable structure, transient control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
