
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Deploying Electric Vehicle Charging Stations Considering Time Cost and Existing Infrastructure

doi: 10.3390/en11092436
Under the challenge of climate change, fuel-based vehicles have been receiving increasingly harsh criticism. To promote the use of battery electric vehicles (BEVs) as an alternative, many researchers have studied the deployment of BEVs. This paper proposes a new method to choose locations for new BEV charging stations considering drivers’ perceived time cost and the existing infrastructure. We construct probability equations to estimate drivers’ demanding time for charging (and waiting to charge), use the Voronoi diagram to separate the study area (i.e., Shanghai) into service areas, and apply an optimization algorithm to deploy the charging stations in the right locations. The results show that (1) the probability of charging at public charging stations is 39.6%, indicating BEV drivers prefer to charge at home; (2) Shanghai’s central area and two airports have the busiest charging stations, but drivers’ time costs are relatively low; and (3) our optimization algorithm successfully located two new charging stations surrounding the central area, matching with our expectations. This study provides a time-efficient way to decide where to build new charging stations to improve the existing infrastructure.
- Tsinghua University China (People's Republic of)
Technology, T, electric vehicle, drivers’ behaviour, infrastructure planning, greenhouse gas, charging station, Voronoi diagram
Technology, T, electric vehicle, drivers’ behaviour, infrastructure planning, greenhouse gas, charging station, Voronoi diagram
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
